

Advantages of a Recipe Driven Execution Program

– A future network of standardized Processes & Systems

Jens Laucht / CSL Behring
Execution Systems / Global Lead Architect

CSL (COMMONWEALTH SERUM LABORATORIES)

CSL Ltd

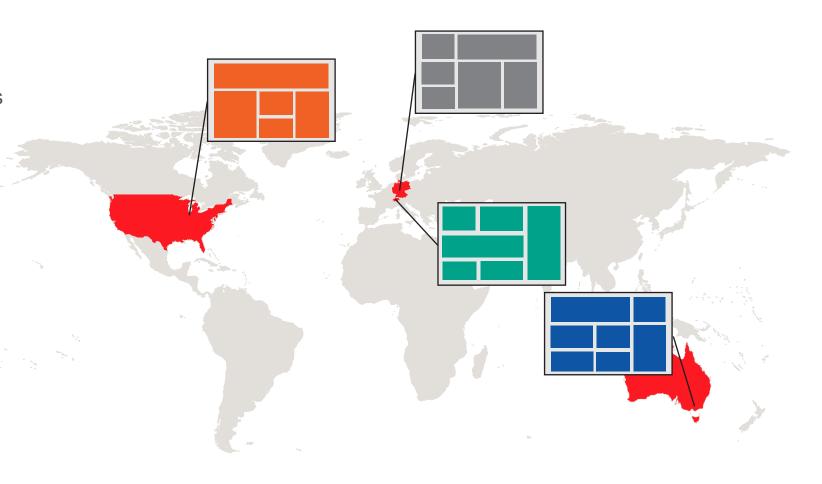
CSL Behring

CSL Segirus

CSL Vifor

CSL is an Australian multinational specialty biotechnology company that researches, develops, manufactures, and markets products to treat and prevent serious human medical conditions.

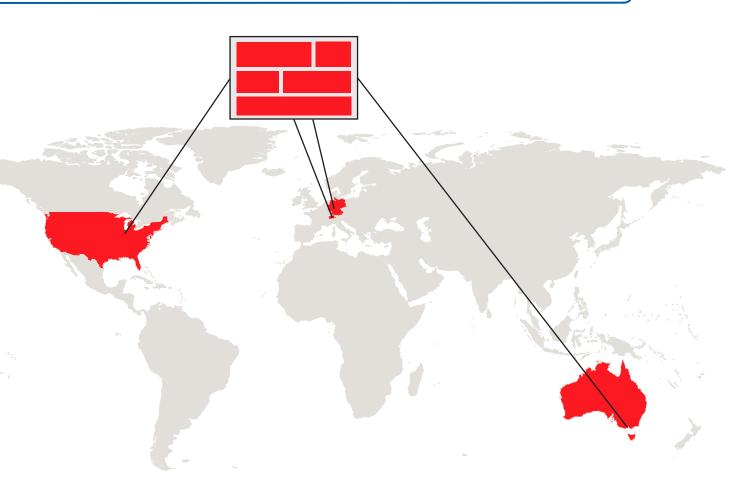
CSL has 32.000 employees and 9 manufacturing sites in US, EU and Australia.


PAST: A PATCHWORK OF DIVERSE SYSTEMS AND PROCESSES

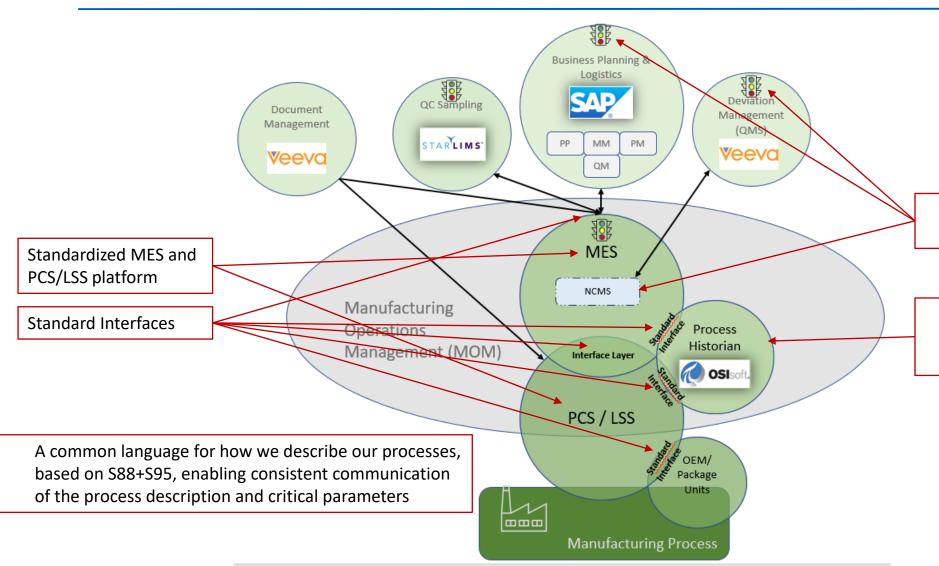
Overall production network comprised of multiple and diverging site-based processes and execution systems

Negative Impacts to business:

- Unique applications + interfaces
- Multi-system user expertise
- Inconsistent business practices driving inconsistent systems
- Higher design and startup costs


FUTURE: A NETWORK OF STANDARDIZED PROCESSES & SYSTEMS

This concept aims to replace these different processes and systems with uniform standardization.


Key drivers are:

- Design once → Deploy everywhere
- Reduced cost of implementation & qualification
- Greater adaptivity and agility across network
- Centrally managed unified library
- Design should be fit-for-purpose on the business needs

WHAT IS RDE?

NCMS to support real-time batch review by exception

Process Data Historian Platform to enable a consistent approach to data analytics (S88 contextualization)

NCMS

Non-Conformance Management System (NCMS)

- to support real-time batch review by exception
- simpler Batch Release process
- MES events will be triggered by PCS/LSS
- Manufacturing Function (MF) will be used to trigger NC events
- Non-Conformance events are critical alarms, critical parameter changes, or manual recipe deviations

PRIMARY VS. SECONDARY MANUFACTURING

Primary / Batch RDE Control

- MES Lite approach
 - eBR and NCMS within MES
 - S95 interfaces to EP
 - Standard interfaces to PCS and PI
 - MES acts as a service provider for PCS
- PCS is the leading system
 - PCS with S-88 structure (contextualized data)
 - Batch engine drives the process
 - Standard interface to MES and PI
 - Standardized interfaces to equipment
 - Create MF for MES incl. NC trigger for NCMS
- Historian as central point for all data incl. contextual

Secondary / Discrete RDE Control

- MES is the leading system
 - eBR and NCMS within MES
 - S95 interfaces to EP
 - Standard interfaces to PCS and PI

- Line Supervisory System Lite approach
 - Standard interface to MES and PI
 - Standardized interfaces to OEM/OEE/PU
 - Create NC trigger for NCMS

Historian as central point for all data incl. contextual

BENEFITS OF RDE

- Reduced total cost of ownership through
 - standardized process automation design and interfaces
 - o reduced qualification by using global library modules
- Error-Proof Drive manufacturing consistency & repeatability through
 - standardized process automation design and interfaces
 - o automate manual transactions and recipe management
 - Decrease batch review and release time through
 - enabling real-time batch review by exception
 - o enabling simpler batch release by exception
- Eliminate paper batch records and the need to manually transcribe data
 - o 1 eBR from MES
- Create enhanced data analytics through
 - all process data incl. contextual in Historian
 - o conduit for "big data" analytics tools

